
/N _/- cP_/

......... Advanced Software Oevelopmen
Works ta tio n Proje c t

_ Phase III Final Report

_'-" = _ (NASA_Cm_ISBS?z,) AOVANCED SOFTWARE
D_VFLUPMENI Wn_KSTATIQN PRGJdCT_ PHASE 3

Fin,nl Report (Research Inst. for Advanced
CSCL 09B unclas

computer Sci:nce) 3_' P G3/oi 0043121 :

w

Inference Corporation

w

February 15, 1991

Cooperative Agreement NCC 9-16
Research Activity No. SE.25

" _ -=_- NASA Johnson Space Center

Information Systems Directorate
Information Technology Division

© ©

Research Institute for Computing and Information Systems

University of Houston - Clear Lake

T.E.C.H'N'I'C'A'L R.E.P'O'R'T

.i

The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information systems in 1986 to encourage NASA Johnson Space .:___
Center and-I_l industry to actively suppoi't research in the computing and _
information sciences. As part of this endeavor, _:Clear Lake proposed a

partnership with JSC to jointly define and manage an integrated program of research

in advanced data processing technology needed for JSC's main missions, including ; .r_
administrative, engineering and science responsibilities. JSC agreed and entered into - j--
a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to _

jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educationalfac!lit_es areshared = _-_
by the two insfftut--lons to _uct the research. = - _--==-

The mission of RICIS is to conduct, coordinate and disseminate research on

computing and information systems among researchers, sponsors and users from

UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear

Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human --=÷
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and

research objectives to advance knowledge in the computing and information

sciences. Working jointly with NASA/JSC, RICIS advises on research needs,

recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results

into the cooperative goals of UH-Clear Lake and NASA/JSC.

J

w

Advanced Software Development
Works ta tio n Proje c t

Phase III Final Report

m
m

L_

m

m

w

m

i

I

II

Z
I

Zm

II

II

_J

m

D

g

F
!

J

m

m

w

w

w

w

w

Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Inference Corporation. Dr. Charles Mckay

served as RICIS research coordinator.

Funding has been provided by the Information Systems Directorate, NASA/JSC

through Cooperative Agreement NCC 9-16 between NASA Johnson Space Center and

the University of Houston-Clear Lake. The NASA technical monitor for this activity

was Robert T. Savely, of the Software Technology Branch, Information Technology

Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

w

Ill

I

mm
i

IB

!

il

mm

m
m

Ii

IP

MI

I

Ull

II

U

m

lib

Im

Ill

U
glm

m

mm

w

m

m

Advanced Software Development

Workstation Project

Phase HI Final Report

U-HCL RICIS Contract NCC-9-16 SE.25

Prepared for

Research Institute for Computing and Information Systems

University of Houston - Clear Lake
and

Software Technology Branch

Information Technology Division

Information Systems Directorate

Johnson Space Center

National Aeronautics and Space Administration

15 February 1991

Prepared by

Inference Corporation

550 N. Continental Blvd.

El Segundo, CA: 90245

(213)322-0200

/nfe r e n c e

Inference Corporation,550NorthContinentalBoulevard,El Segundo,CA 90245 • 213-322-0200, FAX:213-322-3242

I

i

W

il

n

m

m

m

m

mm
i
i

J

h
m

E

m
m

m

I

ASDW PHASE III FINAL REPORT

z

w

v

w

Table of Contents

1. Introduction

1.1 Motivation

1.2 Project Background

1.3 Status

2. Software Information Systems and Case-based Reasoning

2.1 Background: Reuse-Oriented Software Information Systems

2.2 Software reuse as a case-based reasoning process

3. The ACCESS Case-based Reasoning Shell

3.1 Knowledge representation

3.2 Specification

3.3 Retrieval

3.4 Modification

4. User Interaction with ACCESS

4.1 ACCESS Tools Panel

4.2 Browsing or Modifying an Object - the Form Panel

4.2.1 The Generic Form Panel

4.2.2 Custom Forms

4.3 Tools Panel Menus

4.3.1 The Object Menu - Saving, Deleting, or Displaying Source Code

4.3.2 The File Menu - Saving the t<nowledge Base

5. Test Sites

5.1 Generation of SVI)S Runstreams

5.2 Generation of ASDS Drivers

5.3 Generation and Execution of Flight Operations Planning and Analysis

System Input Processors

6. Future Directions

7. Conclusions

1

1

1

1

3

3

3

5

5

7

7

8

10

10

12

12

15

15

16

19

20

20

21

22

23

24

v

PAGE I

ASDWPHASEIII FINALREPORT

Figure 3-1:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:

List of Figures

An associative memory for objects

ACCESS Tools Panel

Prompt for Object Name

ACCESS Generic Form Panel

Panel with Warning of Constraint Violation

Example of a Custom Form

Display of Source Code via Source Panel

8

11

13

14

16

17

18

W

Z
m

J

m

I

I

n

m

z

g

=

n

m

m

m

M

W

PA.=GE=H

r

ASDW PHASE Ill FINAL REPORT

1. Introduction

w

1.1 Motivation

Software development is widely considered to be a bottleneck in the development of

complex systems, both in terms of development and in terms of maintenance of

deployed systems. Cost of software development and maintenance can also be very

high. One approach to reducing costs and relieving this bottleneck is increasing the

reuse of software designs and software components. A method for achieving such reuse

is a software parts composition system. Such a system consists of a language for

modeling software parts and their interfaces, a catalog of existing parts, an editor for

combining parts, and a code generator that takes a specification and generates code for

that application in the target language. The Advanced Software Development

Workstation is intended to be an expert system shell designed to provde the capabilities

of a software parts composition system.

r

m

m

w

v

w

1.2 Project Background

The first phase of the Automated Software Development Workstation Project began in

the fall of 1985 and work has continued to the present. The first phase demonstrated in

a limited domain (Space Station momentum management) the feasibility of a

knowledge-based approach to the development of a software components composition

system. The second phase, which began in April, 1987, focused on ways to exploit

knowledge representation, retrieval, and acquisition techniques to reduce the amount of

effort required to build such systems. The third phase focused on enhancement of the

prototype system developed in Phase II and addressed issues of scale-up and integration

with present or future NASA software development environments. In the current

extension of the Phase III work, emphasis has been on technology transfer to groups

within NASA Johnson Space Center (JSC) and the NASA community and the use of

the ASDW prototype in actual software configuration activities. In addition, work has

been done on the generalization of the ASDW framework to support use of the system

as u generic design knowledge acquisition system.

1.3 Status

ACCESS is the current prototype software for the ASDW. ACCESS is a knowledge-

based software information system designed to assist the user in modifying or

configuring retrieved software or design objects to satisfy user specifications.

The basis for the representing knowledge in ACCESS is ART-IM_ a toolkit for the

development of knowledge-based expert systems. The ART-IM schema system is used

as the mechanism for representing objects within ACCESS. ART-1M rules are used to

propagate constraints within the object system and to test for constraint violations.

PAGE 1

ASDWPHASEIII FINALREPORT w

The user interacts with ACCESS via a graphical, point and click interface. This
interface has been developed using the facilities of TAIE Plus (Transportable
Applications Environment Plus), which provides capabilities for developinginterfaces on
top of the X Window System. The user interface to ACCESS is designedto hide the
details of the ART-IM languagefrom the end user.Standard panelsare provided for the
user to browse and modify objects in the knowledge base. In addition, the knowledge
engineerwho developsa knowledge base to use with ACCESS can also use TAIE Plus
develop customforms for browsing or modification.

The current prototype runs on Sun hardware, but as the source language for :%RT-IM,

TA_E Plus, and ACCESS is C, ACCESS is readily portable to a wide variety of

platforms.

ACCESS is currently being used at JSC and McDonnell Douglas Corporation to develop

domain specific knowledge bases. These development efforts are described briefly in

Chapter 5.

I

J

U

m

m

i

w

I

m
I

II

m

PAGE 2

ASDW PHASE lII FINAL REPORT

F_

w

i

2. Software Information Systems and

Case-based Reasoning

2.1 Background: Reuse-Oriented Software Information Systems

An important part of the process of developing and maintaining software systems is

software reuse, i.e., the activity of retrieving and modifying existing software

components, either for the continuing maintenance of an existing system, or for the

reuse of components in the development of new software. This reuse-oriented software

development activity can be described in the following way (adapted from [18]):

begin

get specification of desired component;

retrleve best matching component;

modify component to satisfy specification;

Reuse-oriented software processes in the development of software systems have been

shown in some experiments to reduce design and maintenance costs [13], [20]. The

development of automated tools to support reuse has been a major focus for a

government initiative in software productivity [3].

Automated support for software reuse has traditionally been accomplished by on-line

catalogs of software components with a user interface based on text information

retrieval mechanisms [7], [2]. More recently, work has been conducted towards the

construction of 8oftware information systems [4] that use a knowledge representation

language to express a knowledge base describing a software system and its components.

Example software information systems are the RLF Librarian [151, MRS [9], LASSIE [4],

the reuse system developed for abstract data types by Embley and Woodfield [5], and

the conceptual information retrieval system for software components developed by

Wood and Sommerville [25]. The advantages of a software information system of this

type are direct support for semantic retrieval, intelligent indexing, and the use of

inheritance and automatic classification for updates [4].

2.2 Software reuse as a case-based reasoning process

To date, work on software information systems has focused on the support of the

specification and retrieval parts of the reuse process described above. In the context of

the Automated Software Development Workstation project [8], we are exploring the

extension of the software information system paradigm through the use of case-based

reasoning to automate the modification part of the reuse process.

Case-based reasoning is a problem-solving paradigm that adapts stored problem

solutions, or cases, to solve new problems specified by a user. It has been applied to a

PAGE 3

ASDW PHASE III FINAL REPORT

range of classification and construction tasks, and is particularly useful in tasks where a

formal set of rules for generating solutions is difficult to obtain, while examples of

correct solutions to problems are readily available. The case-based reasoning process
can be modeled as follows:

begln
get problem specification;

retrieve best matching case;

modify matching case solution to solve problem;
end

m

m
I

The case-based reasoning process model as described is clearly an abstraction of the

software reuse process model, as has been noted by Witliams [24]. The next chapter

describes ACCESS, a case-based reasoning shell, in more detail.

I

m
J

m

u

!

i

m

PAGE4

I

i
m

U

m .

__ i

ASDW PHASE III FINAL REPORT

3. The ACCESS Case-based Reasoning Shell

ACCESS supports the development of knowledge bases that represent requirements and

design templates in reusable software libraries (an earlier version of the system is

described in [1]). Application developers use ACCESS to enter a partial specification of

an object, retrieve the most closely matching objects stored in the knowledge base, and

modify the retrieved object into a new object satisfying the initial specification. This

chapter describes the knowledge representation, the specification process, the retrieval

mechanism, and the modification process in ACCESS in generic terms. Chapter 4

describes these processes as seen by the user though the ACCESS user interface.

r

w

L_

3.1 Knowledge representation

ACCESS knowledge bases consist of a set of objects organized in an inheritance

hierarchy. Objects are either classes, representing sets of objects wkh default attribute

values, or instances, representing concrete objects. Objects are represented using the

schema-based knowledge representation of the ART-IM knowledge base development

system [10]. An example class taxonomy, taken from a ACCESS knowledge base

describing a ephemeris generation software package [16], is presented below in outline
format:

OBJECT

SOLAR SYSTEM OBJECT

STAI_

SATELLITE

PLANET

ASTRONOMICAL DATUM

TIME INTERVAL

COORDI NATES

SPACE COORDINATES

TIME COORDINATES

DATE

APPLICATION

EPHEMERIS

RULE

CONSTRAINT

FORMULA

TEMPLATE

PREDICATE

An example of an object instance is the following schema, which represents a code

fragment in Ada for a data structure representing a date in the ephemeris generation

knowledge base:

w

PAGE 5

ASDW PHASE III FINAL REPORT .,.

(DEFSCHEMA DEC-31ST-1988

(INSTANCE-0F DATE)

(DAY 31)
(HOURS O)

(MILLISECONDS 01

(MINUTE)

(MINUTES O)

(MONTH 12)
(SECONDS 01

(TEXT "(1088,1P-,31,0,0,0,01"1

(YEAR 1988))

The set of allinstances in the knowledge base forms the case base.

Modification rules in the knowledge base are also represented as objects. These rules

are based on the various types of knowledge represented and used in the propose-and-

revise problem-solving architecture of the SALT system [14]. Currently defined rule

classes include:

Formulas: rules that calculate an attribute value for an object by applying a

function to other attribute values of the object or of its subobjects (i.e.,

objects that are values of attributes of the given object).

Templates: rules that compute a string-valued attribute value for an object

by lnstantiating a string template with other attribute values of the object

or of its subobjects.

• Predicates: rules that perform a procedural test on an object. If the test

fails, the object is marked as having a constraint violation.

An example of a modification rule is the following template, which was applied

generate the code fragment in the DEC-31ST-1988 object shown above:

(DEFSCHEMA DATE-TEMPLATE
(INSTANCE-OF TEMPLATE)
(ARGUMENTS (YEAR MONTH DAY HOURS MINUTES SECONDS MILLISECONDS))

(ATTRIBUTE TEXT)

(CONSTRAINT OF DATE)

(TEMPLATE STRING "(_,_a,_,_,_,_,_) "))

tO

As in SALT, the modification rule objects are automatically transformed at knowledge

base initialization time into ART-IM production rules. The execution of applicable

modification rules is performed using the ART-IM inference engine, which uses _.

modified version of the Rete algorithm [6] to determine which rules can be applied to

objects in the knowledge base. A justification-based truth maintenance system manages

the consistency of the attribute values associated with the objects in the knowledge

base, and automatically retracts attribute values asserted by modification rules when

support for the values is retracted.

PAGE8

i

J

J

m

i

U

B

u

Z

J

g

I

g

!

I

ASDW PHASE III FINAL REPORT

v

3.2 Specification

The user of ACCESS enters a new specification of a software object

following procedure:

begin

select default specification from a class in the taxonomy;

repeat

retrieve matches for specification;

manually modify specification using features from matches;

execute applicable modification rules;
until done;

end;

through the

This process is known as specification-by-reformulation [26]. In the ACCESS user

interface, this process is supported using the same style of multi-windowed mouse-driven

user interface used in the ARGON [17], BACK_BORD [26] and LASSIE [4] systems. As in

the BACKBORD system, specification-by-reformulation is also used as a framework for

the interactive acquisition of new object classes and instances from knowledge base

developers.

3.3 Retrieval

Given a partial specification of an object as a query, retrieval of objects in the

knowledge base is performed in ACCESS using a associative memory implemented using

the redundant hash-addressing (RHA) algorithm [23].

An associative memory for object retrieval can be implemented as a two-layered

connectionist network, where a feature layer, where each unit stands for an

attribute/value pair, and a data layer, where each unit stands for an instance in the

knowledge base [11]. A node in the feature layer is connected to a node in the data layer

if and only if the feature represented by the feature layer node is present in the instance

represented by the data layer node. In a RHA implementation of such a network, the

data layer is an array of pointers to instances, and the feature layer is represented using

a hash table with buckets corresponding to each feature containing pointers to sets of

array elements. A match table is used to accumulate activation levels for units in the

data layer during the retrieval process. Figure 3-1 shows the data structures involved in

the associative memory.

The associative memory supports the retrieval of the nearest neighbors of an object in a

qualitative feature space. This is due to the fact that the distance in the feature space

D(01,02) between two objects 01 and 02 is calculated by the following formula, where

A(0) is the number of features associated with an object and M(01,02) are the

number of matching features between objects 01 and Q2 [12]:

D(01,02) = max(A(0t),A(02)) - M(01,02)

PAGE 7

ASDWPHASEIII FINALREPORT

Query Feature Layer Data Layer Match Table

o

- O1 0 3

o0
g

o
o

where O. is an object, a. is an attribute, and vkis a valuei !

Figure 3-1: An associative memory for objects

iw

W

II

J

IIII

L

g

w

B

g

When a is the maximum number of attributes for an object, and n is the number of

objects stored in memory, the complexity of the algorithm is 0(a) * O(n) for

preprocessing time. 0(a) + 0 (n) for retrieval time. and the storage cost is 0(n) +

0(a.n) [21]. This compares favorably with the Tree-Hash case retrieval algorithm

[22] in situations where the number of attributes associated with cases is large and

varies frequently during the process of knowledge acquisition, as is the case in the

ACCESS.

Currently. the associative memory exists completely in th_irtu_lbmer_ry of ACCESS

process. A slmple=ex_tension of the alg0r]thm 'to include a hierarchical memory"

organization (based on that used in commercial text database retrieval systems) can

allow the algorithm tO handle knowledge bases with i0 _ objects [19], [i2].

3.4 Modification

Modification of ACCESS objects results from a combination of manual editing and

constraint propagation. Having partially specified an object, the user can edit the best

matching object, thereby creating a new object matching the desired specification.

Then an)" applj!ab!e _ constraints embodied in the: knowledge base will be propagated in
th'e _m0dified object. For example, suppose the instance of a DATE object shown above.

DEC-31-1988. is copied and modified by changing the value of the day attribute to 15

PAGE

IF

m
g

E

!
I

i

!
g

m

ww

ASDW PHASE III FINAL REPORT

and renaming the object DEC-15TH-1988. The modification rule embodied in

DATE-TEbIPLATE will then result in the modification of the TEXT attribute to reflect the

correct code fragment, as indicated below:

(DEFSCHEMA DEC-15TH-1988

(INSTANCE-OF DATE)

(DAY 15)

(HOURS o)
(MILLISECONDS O)

(MINUTE)

(MINUTES O)

(MONTH 12)

(SECONDS O)

(TEXT "(1988,12,15,0,0,0,0)")

(YEAR 1988))

&

PAGE 9

ASDW PHASE III FINAL REPORT

4. User Interaction with ACCESS

The ACCESS user interface provides capabilities for the user to browse the taxonomy of

a knowledge base, select a particular instance (case) or class from this knowledge base as

the "current object", and browse/edit either the currently selected case or, if the

current object is a class, an instantiation of the selected class. Once an object has been

selected, a list of objects matching that object is displayed along with a measure of the

degree of matching. Any of these objects can then be selected as the current object.

Once an object is "opened" for browsing or editing, it can be copied and modified to

meet the user's specifications using either a generic form supplied as part of the

ACCESS shell or custom forms which have been developed by the knowledge engineer

to support a particular knowledge base.

In addition, there are options on an "object menu" to allow the user to compare the

current object's features with those of any other object in the same class and to allow

the user to browse any source code generated for the object and, optionally, write it to

a text file. Other options on this and the "knowledge base" menu allow the user to

"save" newly created objects or to "save" the entire knowledge base to a file.

The following sections describe in more detail ACCESS functionality as it appears from

the end user's perspective. The examples in this section are taken from a knowledge

base being developed to represent an orbital trajectory simulation system, SVDS. In

this case, the code generation facilities which are supported by ACCESS are used to

build input streams for the simulation program.

4.1 ACCESS Tools Panel

The ACCESS Tools Panel displayed in Figure 4-1 is the first panel displayed upon

invocation of ACCESS. The top half of this panel is used to display the taxonomy of

the knowledge base. Within this region are three taxonomy subpanels or "windows."

If an object in one of these subpanels is selected (by pointing and clicking) with the

mouse, it is highlighted and becomes the "current object." If this object has children,

then a list of these children is displayed in the next window to the right, with the name

of the previously selected object displayed above. If an object is selected from the

rightmost taxonomy window, then the taxonomy display is shifted one panel left before

displaying the child list. Two buttons on the left of the taxonomy windows offer the

user the option of shifting the display of the currently displayed taxonomy either right

or left.

In the center there is a subpanel or "button" called the Open Object Button. This

subpanel displays the name of the current object - that object which has been most

recently selected from the taxonomy windows. If the current object is an object

instance (a case), then this button offers the option of "opening" the object for

PAGE l0

w

w

g

m

I

11

g

D

I

L

W

U

E
I

R

W

ORIGINAL PAGE IS
OF POOR QUALITY

ASDW PFL4,SE III FINAL REPORT

Figure 4-1: ACCESS Tools Panel

browsing or editing. Clicking on this button will invoke either the generic Form Panel

or a custom form through which the object can be modified. If the current object is a

class, then this button offers the option of creating an instance of that class and then

opening the resulting instance for browsing or modification.

In the lower half of the Tools Panel are two windows, the Bookmarks \Vindow and the

X[atches Window. The Bookmarks Window displays a chronologically ordered list of

PAGE ii

ASDW PHASE III FINAL REPORT

objects which have been opened during this ACCESS session. The Matches windows

provides a list of objects in the same class as the current object, ordered by the extent

to which they "match" the current object. Matching between two objects is done by

comparing the features of one object with those of the other - each feature which

matches increases the level of matching.

When an object is selected from either the Bookmarks Window or Matches Window by

a mouse click, it becomes the current object. When this happens, the taxonomy

windows are updated to display the ancestors and siblings of this object. The Open

Object Button is updated to show the name of the new current object, and the Matches

"Window is also updated.

At the bottom of the Tools Panel is a display showing the name of the file from which

the current knowledge base was loaded or to which it has been saved in the course of

the current session.

4.2 Browsing or Modifying an Object - the Form Panel

In order to open an object or an instance of a class for browsing and/or editing, the

user clicks on the Open Object Button in the center of the Tools Panel. If the current

object represents a class, rather than an object instance, the user will be prompted for

the name of a new instance, as illustrated in Figure 4-2. If the user supplies such a

name, t}[at becomes the name of the new current object.

4.2.1 The Generic Form Panel

Once an object instance is opened, the generic Form Panel will be displayed (unless a,-

custom form has been specified for the class to which the object belongs). When the

Form Panel appears, the Tools Panel is "frozen" - that is, it becomes insensitive to

mouse clicks and other input. The generic Form Panel is shown in Figure 4-3.

The name of the object being browsed is displayed in the upper left hand corner of the

Form Panel. In the top half of the panel is the Object Features subpanel or window.

Displayed inside this window are a list of object attributes and values. Attribute names

and values are truncated if necessary to conform with the screen size. The user can

select a particular feature to examine by pointing and clicking with the mouse.

When a feature is selected, the value corresponding to that feature is displayed in the

Attribute Value subpanel, which appears in the lower half of the Form Panel. The user

can enter text directly into this subpanel, thus editing the currently selected attribute

value. Any such editing must be confirmed by hitting the ESC key. When this is done,

the Features display will be updated to show the modified value.

U

U

i

IP

g

w

m

U

g

I

g

J

J

m

R

m
m
m

!

g

PAGE 12 _-J

ORIGINAL PAGE IS

OF POOR QUALITY

ASDW PHASE IIIFINM, REPORT

Object N_: L

iN

Figure 4-2: Prompt for Object .Name

Alternatively, if the currently selected attribute is one whose value is restricted to an

enumerated set, or to an instance of an allowable class of objects, a "SELECT" button

will appear to the top and right of this subpanel. By clicking on the SELECT button.

the user will cause a menu of allowable values for this attribute to be displayed: he can

then select one of them from the menu. If a selection is made, the Features displa.v will

be modified to show the newly-selected value.

PAGE 13

ASDW PHASE III FINAL REPORT

ORIGINAL PAGE IS

OF POOR QUALITY
= =

I

KE3 Fan
I

=
II

I

iii

I

i

I

±:w

I

I

J

I

Figure 4-3: ACCESS Generic Form Panel

Editing within the Attribute window does not change values in objects in the knowledge

base until the user clicks on either the "APPLY" or "OK" button in the upper right

hand corner of the Form Panel. Clicking on the =kPPLY button causes the changes

which have been recorded on the Form Panel to be made to the object in the knowledge

base or. if the object being edited is _ "SA\'_D '' object, to a copy of that object.

\Vithin the knowledge base. objects are considered to be either "SA\-ED" or

P.kGE It

m
I

I

=
I

I

I

I

ASDW PHASE III FINAL REPORT

"WORKING." SAVED objects are those which were read into the knowledge base at

initialization time or which _ave been explicitly saved by the user (see Subsection 4.3.1).

No modifications can be made to a SAVED object. A WORKING object, on the other

hand, is one which has been created by the user in the course of the current session and

has not been explicitly saved.

If the user is editing a SAVED object when he selects APPLY or OK, he will be
, ,qprompted for a new object name. ACCE_.S will make a copy of the saved object, assign

it the new name and apply the changes to it.

Onc.e any changes to attribute values have been made, any constraints based on these

new values are propagated. If constraint violations are detected, then a pop-up panel

with a warning message is displayed, with one warning message for each constra;nt

violation. (Figure 4-4 shows the pop-up warning panel.) The Matches Window is also

updated based on the new attribute values.

The final button in the top right hand corner of the Form Panel is the "CLOSE"

button. Clicking on the CLOSE button causes the Form Panel to be erased from the

screen and resensitizes the Tools Panel.

w

OK is equivalent to .aPPLY followed by CLOSE.

4.2.2 Custom Forms

By default, when an object is browsed or modified, this is done via the generic Form

Panel, described above. However, the knowledge engineer who creates a knowledge base

can also create custom forms for editing objects which are instances of a particular

class. An example of a custom form is given in Figure 4-8. This form is used to specify

features of a propagarolon-selection object, which specifies the integration

techniques by which an orbit will be propagated. .as this example shows, when a

custom form is ased, various object features can be easily hidden from the user.

Custom forms are specified for an ACCESS application using the screen painting

facilities of TAE Plus (Transportable Applications Environment Plus). TA_E Plus

provides an environment for developing and running window-based applications based

on the X Window System. Details on how to specify the interface between TAE forms

and ACCESS objects are given in The ACCESS User's Guide: Building a

Knowledge Base.

4.3 Tools Panel Menus

Near the top of the Tools Panel are two pulldown menus - the Object menu and the

Knowledge Base Menu. The functions these menus support are described in the

following subsections.

PAGE 15

ORIGINAt PA_E IS

OF PoOR QUALITY

ASDW PFD, SE III FINAL REPORT

====_

i

F-cq

.I_.F.STUI)Y.C_I

g

J

W

U

I

Figure 4-4: Panel with Warning oC Constraint Violation

4.3.1 The Object Menu - Saving, Deleting, or Displaying Source Code

The Object \{enu consists of three options - save. delete, compare, and view source.

Each performs its function on the current object, that is, the object whose name is

displayed on the Open Object button.

The save option makes the current object a SAVED object. This means that this

P.-\GE [6

g

Ili

z

U

U

=

w

ORIGINAL P_,,._E "-
t v

OF POOR 4,,., ,,,.,.

A.SDW PHASE llI FINAL REPORT

Figure 4-5: Examp[eof aCustom Form

o_:ject can no longer be modified by editing and that its description will be saved ir one

of the save options is selected from the Knowledge Base Menu.

The delete option deletes the current object,from the knowledge base. If this object,

appeared on the Bookmarks list. it is deleted from that list. A new object is selected to

be the current object and the deleted object will no longer appear in the object

taxonomy display.

PAGE LT

ASDW PFL-_SE III FINAL REPORT

The compare option allows the user to compare the current object with another object

in the same class. When this option is selected, a pop-up menu of objects with the same

parents is displayed. [fthe user selects one of these objects, then a panel appears which

gives a static dlsplay of all features (attribute/value pairs of the two objects which are

,1ifferent.

OR!G;NAL PAGE IS

OF POOR QUAUTY

II

Figure 4-6: Display of Source Code via Source Panel

The view source option displays value of the r, exr., slot of the current object on the

PAGE _18
=

m

!

I

_m

g

W

ASDW PHASE III FINAL REPORT

v

v

Source Panel. The displayed text can be browsed, but not modified by the user. This

option is appropriate when ACCESS is being used to generate source code or an input

stream for some software system, as it allows the user to examine the generated code.

The Source Panel is shown in Figure 4-6.

At the top of the Source Panel are "WRITE" _nd "CANCEL" buttons. By selecting

the WRITE button, the user causes the text in the text slot of the current object (i.e.,

the text which is displayed on the Source Panel) to be written to a file. The base name

for this file is the name of the current object; its suffix is txt.

Selecting the CANCEL button returns control to the Tools Panel.

4.3.2 The File Menu - Saving the Knowledge Base

The Knowledge Base Menu consists of three options - save, save as.., and exit.

When the option save is selected, all SAVED objects in the knowledge base as well as

ancillary customization data will be written out to the "current" file. This is the file

whose name is displayed at the bottom of the Tools Panel - initially, it is the file from

which the knowledge base was loaded. If there are WORKING objects in the

knowledge base, a warning panel will be displayed and the user will have the option of

canceling the save. The file created by save can be used as input to a subsequent

ACCESS session.

The option save as.. works in the same way as save, except that the user is prompted

['or the name of a file to save to. When supplied, this becomes the curre.nt file.

The exit option causes the current ACCESS session to be terminated.

w

PAGE 19

5. Test Sites

ASDW PHASE III FINAL REPORT I

Knowledge bases for ACCESS have been or are currently being developed at NASA and

at McDonnell Douglas Corporation to support software reuse. These projects are

described briefly in the following sections.

5.1 Generation of SVDS Runstreams

Space Vehicle Dynamics Simulation (SVDS) is a large (several hundred thousand lines of

Fortran code) computer simulation program used by flight planners at NASA JSC to

help design the trajectory and flight plan for space shuttle missions. Its simulation

capabilities include a variety of trajectory and vehicle dynamics problems. Input for a

typical SVDS run consists of more than one thousand data values.

In order to construct the input stream for a simulation, the user will typically search for

an old data set (called a "data deck") which approximates a closely as possible the

specifications for the current simulation. The user will then modify it as appropriate.

Data decks may contain comments identifying the variables and their values, but

generation and maintenance of such comments depends on the motivation of the user.

Similarly, related input variables are usually grouped together, but there is no

automatic enforcement of this sort of structure. Because of the large number of input

variables, training a new user is a lengthy process. It is difficult even for experienced

users to set up a deck without making some errors. Since a typical SVDS run requires

hours or days to execute, the consequences of errors can be fairly expensive.

r

W

ID

i

i

m

i

J

g

ACCESS is currently being used as a tool to provide an intelligent interface for data

deck preparation. Data decks, also called runstreams, have been categorized based on

the specific function they perform relative to trajectory generation. Each class of

runstream has been divided into logical groups that together comprise the inputs

necessary to specify a complete runstream. Each class has associated with it certain

"features" - e.g., the type of input values that are necessary to define a specific portion

of the simulation. The various classes of runstreams and their features are then

represented as ACCESS objects (_RT-IM schemas). The development and

characterization of this object hierarchy is the key to creating the knowledge base.

Custom forms have been built for various runstream components. These custom forms

permit easy data entry and or modification of default inputs. Certain computations

which previously had to be performed manually have been expressed in the ACCESS

system as constraints. For example, the time of specific mission events is generated

automatically from input values of day, hour, minutes, and seconds. Currently, such

computations are performed using hand calculators and constitute one of the most

error-prone steps in the data deck preparation process.

g

li

J

IB

i

W

PAGE 20 _,

__ ASDW PHASE III FINAL REPORT

Once the relevant features of an data deck component have been specified, the ACCESS

template mechanism is used to generate automatically the appropriate portion of the

runstream. This code may include comments. Once the input values for the required

components within a class of runstreams have been specified, a syntactically valid

runstream is available for execution.

w

5.2 Generation of ASDS Drivers

The first application of ACCESS was to build drivers for the Ada Simulation

Development System, ASDS, developed by McDonnell Douglas Space Systems Company,

Engineering Services Division.

The ASDS is an Ada-based system for developing simulation programs.

"Philosophically, ASDS assumes that any simulation can be characterized as

propagation separated by discrete events. The two basic functions, propagation and

discrete event execution, are captured in the ASDS executive routines in a very general

way. Consequently, any specific simulation is rather easily set up, since it requires only

the instantiation of the generic logic...When a user wants to create a specific application

using ASDS, he/she must develop routines that control all of the discrete events, and

must develop functions that "trigger" those events. In addition, if integration is

desired, an equations of motion routine must be developed. Also, routines that read

input must be developed. Then, a driver can be constructed that instantiates the

generic routines with the specific routines developed, and a control loop constructed." l

The ACCESS knowledge base for the ASDS includes previously written drivers and

driver templates. These are available to the user as a starting point for development of

a new driver. Initially, the user makes use of the ACCESS retrieval mechanism to

select an existing driver that most closely represents his/her present task. .ks the user

selects routines to be used in the driver, the corresponding Ada code for the driver is

constructed automatically. If the user modifies an ACCESS driver component, the

corresponding Ada code is updated automatically, providing single point maintenance of

the ASDS drivers.

This prototype application of the ACCESS system was demonstrated the first quarter of

1990 in conjunction with McDonnell Douglas' presentation of the Knowledge Based

Executive.

1Extracted from "The ASDS Executive" by Dr. Robert G. Gottlieb, McDonnell Douglas Space Systems

Company, Engineering Services Division.

PAGE 21

ASDW PHASE III FINAL REPORT

5.3 Generation and Execution of Flight Operations Planning and

Analysis System Input Processors

Another McDonnell Douglas Engineering Services Division project is serving as a test

site for application of ACCESS. The project is called Operations Planning and Analysis

System, Flight Dynamics Planning and Analysis Software. The software generated in

this project makes use of a variation of the ASDS. The difference is that this project is

focused on simulation development from the user's perspective. The scope of

simulations that can be generated is narrowed and a more complete environment for

simulation development and execution is provided. The application of ACCESS

concentrates on development of input tables for the predefined processors available.

The ACCESS knowledge base includes a library of input tables that have been created

for each of the available processors. Also, available is the ability to generate sequence

tables, permitting the processors to be executed in sequence with varying input tables

corresponding to the processors. The user selects a category of processor input tables or

sequence tables, peruses the examples, and modifies the specific table values via a

customized form entry for that class of processor.

m

J

w

g

J

Extensions to this project include expanding the ACCESS environment to generically

handle creation of the Unix shell scripts required to complete the cycle of simulation

creation and execution by the user. Also, integration to existing processor input tables

presently stored in a binary record format is required.

m

mm

I

I

W

:, _2 , m

I

m_

m
m

g

m

g

m

PAGE 22

W

ASDW PHASE III FINAL REPORT

6. Future Directions

ACCESS in its current state of development represents a working prototype - that is, it

is anticipated that with the creation of suitable knowledge bases, ACCESS should

provide demonstrable productivity gains for end users. Thus, in the near term,

emphasis will be on enhancing the knowledge bases currently under development and

evaluating users' responses to the end result. Numerous changes have been made to the

ACCESS user interface during the past year on the basis of perceived user needs.

However, it is anticipated that further minor changes will have to be made in response

to field test results.

Currently, the ACCESS associative memory is memory-resident. An anticipated task

within the next year is to provide an Object Management System (OMS) approach to

handling objects in the knowledge base. In particular, this means providing a secondary

memory implementation of the associative memory algorithm and developing a method

for representing objects in ,_RT-IM schema system on an as-needed basis.

Currently, the development of a knowledge base is still primarily a manual process

using text-editing software. Another focus in the coming year should be on developing

a Knowledge Engineer's Interface to ACCESS. This goal in developing this interface

will be to eliminate the need for a text editor when the KE creates a knowledge base.

The features of this interface will be specified after feedback from the current

knowledge base development efforts being undertaken at NASA and MDAC. However,

the following is a list of possible functionality to be provided:

• Ability for the ICE to create new classes and attributes for existing classes.

• An interface for adding constraints and doing consistency and error checking

on constraint templates.

• A utility to provide some degree of automation in generating the ART-IM

specifications for custom forms from TAE .rfg files.

In addition, a mid-term goal is to provide an implementation of the Engineering

Scripting Language whose specification is to be provMed by another contractor.

Another direction for enhancement of ACCESS functionality is provide an interface to

the underlying operating system for closed loop execution of software developed using

ACCESS.

PAGE 23

ASDW PHASE III FINAL REPORT w

7. Conclusions =--

ACCESS provides a generic capability to develop software information system

applications which are explicitly intended to facilitate software reuse. In addition, it

provides the capability to retrofit existing large applications with a user-friendly front

end for preparation of input streams in a way that will reduce required training time,

improve the productivity even of experienced users, and increase accuracy. Current and

past work shows that ACCESS will be scalable to much larger object bases.

u

I

g

g

I

i

g

m
m

g

i

m

m
I

g

J

i

m

I

B

m
E

m

j

g

PAGE 24
........ i !

ASDWPHASEIII FINALREPORT

e

w

: =

=

m

L

References

1. Alien, B.P. and Lee, S.D. A Knowledge-Based Environment for the Development of

Software Parts Composition Systems. Proceedings of the llth International Conference

on Software Engineering, IEEE, May, 1989.

2. Arnold, S.P. and Stepoway, S.L. The REUSE System: Cataloging and Retreival of

Reusable Software. Proceedings of IEEE Spring COMPCON '87, March, 1987.

3. Batz, J.C., Cohen, P.M., Redwine, S.T. and Rice, J.R. "The Appllcatlon-Specific

Task Area". IEEE Computer 16, ll (November 1983).

4. Devanbu, P., Selfridge, P.G., Ballard, B.W. and Brachman, R.J. A Knowledge-

Based Software Information System. Proceedings of the Eleventh International Joint

Conference on Artificial Intelligence, August, 1989.

,5. Embley, D.W. and Woodfield, S.N. A Knowledge Structure for Reusing Abstract

Data Types. Proceedings of the 9th International Conference on Software Engineering,

IEEE, March-April, 1987.

g. Forgy, C.L. OPS5 User's Manual. Tech. Rept. CMU-CS-81-135, Carnegie-Mellon

University Computer Science Department, 1981.

7. Frakes, W.B. and Nejmeh, B.A. Software Reuse Through Information Retrieval.

Proceedings of IEEE Spring COMPCON '87, March, 1987.

8. Fridge, E.R. III. The Automated Software Development Workstation Project.

Proceedings of the Evolutionary Space Station Symposium, NASA, February, 1990.

9. Hendler, J.A., Wong, Y.C., Vinciguerra, A. and Mogilensky, J. AIRS: An AI-Based

Ads Reuse Tool. Proceedings of AIDA-87, November, 1987.

10. Inference Corporation. ART-IM 2.0 Reference Manual. Inference Corporation,

1989.

11. Kohonen, T. Self-Organization and Associative Memory. Springer-Verlag, 1988.

2nd edition.

12. Kohonen, T. Content-Addressable Memories. Springer-Verlag, 1988. 2nd edition.

13. Lanergan, R.G. and Grasso, C.A. Software Engineering with Reusable Designs and

Code. In Software Reusability (V. 2: Applications and Experience), Biggerstaff, T.J.

and Perlis, A.J., Eds., ACM Press, 1989.

14. Marcus, S. SALT: A Knowledge Acquisition Tools for Propose-and-Revise

Systems. In Automating Knowledge Acquisition for Expert Systems, Marcus, S., Eds.,

Kluwer Academic, 1988.

-i g

5 -2

= :

f --

p

=±

PAGE 25

ASDW PHASE III FINAL REPORT

15. McDowell, R.C. and Cassell, K.A. The RLF Librarian: A Reusablility Librarian

Based On Cooperating Knowledge-Based Systems. Proceedings of Fourth Annual

Knowledge-Based Software Assistant Conference, RADC, September, 1989.

16. U.S. Naval Observatory. Almanac For Computers 1988. U.S. Government

Printing Office, 1988.

17. Patel-Schneider, P.F., Brachman, R.J., and Levesque, H.J.._RGON: Knowledge

Representation meets Information Retrieval. Proceedings of the First Conference on

Applications of Artificial Intelligence, 1EEE, December, 1984.

18. Prieto-Diaz, R. and Freeman, P.

Software 3, 1 (January 1987).

"Classifying Software for Reusability". IEEE

19: Salton, G. Automatic Text Processing. Addison-Wesley, 1989.

20. Selby, R.W. Quantitative Studies of Software Reuse. In Software Reusability _/:

2: Applications and Experience), Biggerstaff, T.J. and Perlis, A.J., Eds., ACM Press,

1989.

21. Stone, H.S. "Parallel Querying of Large Databases: A Case Study". IEEE

Computer 20, 10 (October 1987).

22, Stottler, R.H., Henke, A.L. and King, J.A. Rapid Retrieval Algorithms for Case-

Based Reasoning. Proceedings of the Eleventh International Joint Conference on

Artificial Intelligence, August, 1989.

23. Venta, O. and Kohonen, T. A Content-Addressing Software Method for the

Emulation of Neural Networks. Proceedings of the IEEE International Conference on

Neural Networks 1988, IEEE, July, 1987.

24. Williams, R.S. Learning to Program by Examining and Modifying Cases.

Proceedings of the DARPA Workshop on Case-Based Reasoning, May, 1988.

25. Wood, M. and SommerviUe, I. "An Information Retrieval System for Software

Components". ACM SIGIR Forum 22, 3,4 (Spring/Summer 1988).

26. Yen, J., Neches, R. and DeBellis, M. BACKBORD: Beyond Retrieval by

Reformulation. Tech. Rept. ISI/RS-88-202, USC ISI, March, 1988.

w

J

D

m

g

e

I

g

J

g_

z
mr

PAGE 26

i

i

L

